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STABILITY OF HETEROGENEOUS SYSTEMS WITH COHERENT INTERPHASE BOUNDARIES* 

M.A. GRINFEL'D and M.P. LAZAREV 

The necessary conditions for stability (the sufficient conditions for instability) are 
found for two-phase configurations with coherent transformation boundaries. The phases 
(assumed isotropic) of the same chemical substance differ by elastic moduli of different 
orders. In addition, the "natural" deformation (ND) of the transition between the phase 
reference configurations is assumed to be small. 

By utilizing the asymptotically small ND of the phase transformation it is possible to 
find the physical parameters and equations of the interphase surfaces for the equilibrium 
configurations as series expansions in a small parameter in the neighbourhood of the 
reference states. In the case of coherent transitions, the homogeneous stress-deformed 
state of one phase is uniquely determined by the given homogeneous state of the adjacent 
phase, the orientation of the plane coherent boundary, and the ND of the transformation /l, 

2/. 
To analyse the stability conditions for the equilibrium of heterogeneous thermodynamic 

systems, an approach is used which is based on studying the non-negative definiteness of the 
second variation of the appropriate energy functional 13, 4/. The equilibrium stability of 
configurations in which the phases are in the homogeneous stress-deformed state and are 
separated by a plane interphase boundary is found by seeing the conditions for non-negative 
definiteness of the proper spectral value of a system of linear homogeneous partial 
differential equations with constant coefficients and with suitable boundary conditions. 

Isothermal heterogeneous systems with isotropic incompressible phases will be 
considered here. In the context of an asymptotically small transformation ND, the solution 
of the spectral problem of /4/ is sought as series in a small parameter. In the lowest 
approximation in the two-dimensional case, for homogeneously deformed phases, this means 
that the problem can be greatly simplified and criteria can be found for the loss of stability 
of the plane coherent boundary. The stability question is uniquely solved when the 
stress-deformed state of one phase is known and the transformation ND is given. The 
equation is found for the critical deformations (the equation of the surface of neutral 
stability), which have the order of the transformation ND. The stabilizing and destablizing 
factors are found for the coherent boundaries. It is shown that, if, in the hydrostatically 
stressed state, there is a phase with a lower shift modulus in a two-phase equilibrium 
configuration with coherent boundary and ND of cubic expansion-compression, then the system 
is always unstable. These results are used to examine the local stability of some 
equilibrium configurations Of heterogeneous systems with curved coherent boundaries between 
the inhomogeneously deformed phases. 

The stability of a periodic structure consisting of alternating layers of two different 
phases is considered. The relevant dispersion equations and the equations of the surface of 
neutral stability are found. The necessary conditions for the stability of these structures 
to disturbances of the symmetric and antisymmetric type are stated. A special limiting case 
of this problem is the problem of the stability of the plane layer representing the embryo 
of a new phase in an unbounded elastic matrix. 

The effect of external boundaries is exemplified by considering the stability of a new 
phase embryo on the surface of an elastic half-space (a rigid wall of free surface). In the 
rigid-wall case, long-wave disturbances do not lead to a loss of stability. In the 
free-surface case, instability under long-wave disturbances sets in if there is a non-zero 
jump of the principal stresses in a direction tangential to the interphase boundary. 

1. The nece88~~ condition8 for the etcrbitity of systems with coherent interphase 

boundariss. Consider an isothermal heterogeneous system consisting of two 
elastic phases ("plus" and "minus") of the same chemical substance, which are separated by a 
coherent interphase boundary. There is no surface tension and there are no external fields 
of force. 
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The reference conguration of the pluse phase is identified with the initial one-phase 
configuration Il./. We assume that, corresponding to transition to the reference 
configuration of the minus phase, we have a small affine ND, which causes displacements UT, 
of the material particles, which are given by the relation 10, = eA,,x', A,, - 1, e< f, where 
$ are the Lagrangian Cartesian coordinates in the initial configuration 0, I = 1, 2, 3). 

Assuming that the phases in the reference configurations are in the unstressed state at 
a temperature where the densities of the free energies of the phases per unit mass are the 
same, we can find the fields of the auxiliary particle displacements uf and the equation of 
the interphase boundary x' (g=, c?) (El, ES are the surface coordinates) in the actual hetero- 
geneous configuration, as series in the small parameter e /l/. 

m 

u*’ = X eN&.+, 
NM 

xi (Em, 8) = 21 fw eNd N (?) (W 

A spectral problem has been established 13, 4/ for studying the stability conditions 
for an equilibrium heterogeneous configuration in which the homogeneously deformed phases 
are separated by a plane interphase boundary. We denote by %f the gradients, constant 
in each phase, of the displacements vl,f (a comma in front of a Latin subscript denotes 
differentiation with respect to the space coordinate of the initial configuration). 

The solution of the spectral problem of /4/ is also sought in the form of the series 

(1.2) 

Here, II is the eigenvalue of the spectral problem, a* are the variations of the field of 
auxiliary displacements, and c is the "velocity" of the interphase surface of the pre-image 
in the initial configuration in the direction of the unit normal n',induced by a change of 
the variation parameter. In a non-trivial real field a", c, which belongs to an eigenvalue 
n and which satisfies the normalization condition (1.8) of /4/, the second variation of the 
free energy of the system takes extremal value, equal to n. Consequently, the eigenvalues 
n must be non-negative for the thermodynamic system to be stable. 

In the lowest approximation.in e, the spectral problem of /4/ is 

Here, 9 is the density of the free energy per unit mass, and the bar indicates that 
the derivative is evaluated for Q -0; a comma in front of a Greek subscript indicates 
partial differentiation with respect to a surface coordinate. The first relation of (1.31 
must hold in the relevant phases, and the rest on the interphase boundary. 

For the isotropic phases, the components of the tensor $jkl are evaluated from /5/ 

m;i;ij" =kgii~kl+ P(6ikAjl + @l@) (1.4) 

Here, m is the mass density in the initial configuration, and &k, W are the Lame 
coefficients, evaluated in the reference configurations. 

We shall confine ourselves to the case of plane deformation, taking the fields diS, Y$* aS 
equal to zero tinstead of aei, vii, and so we henceforth use the notation U’,Vi , and n) , 
and the fields 5, % a,, % as independent of 9. We shall also asQume that the phases 
are isgtropic and inconpressible, i.e., the coefficient h tends to infinity, while It.* f 

and a'.,* vanish (i = 1,2; i = 1 refers to the coordinate x, and i=2, to 21. We denote the 
finite quantity ~~~i* by P*, and h*:a".,+_ by P+' TV). Augmenting system (1.3) by the 
incompressibility condition, then eliminating c-1 and using the equilibrium conditions 
(see e.g., the first of (2.10) of /l/j, the system becomes 

a) inside the phases 
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b) on the surface (pre-image of the interphase boundary (z = 0) 

(IA). 

All the information about the deformed state of the system is contained in the two 
parameters a and S. In an equilibrium heterogeneous configuration with plane coherent boundary 
between the homogeneously deformed phases, the state of the phase, when the transformation 
ND is known, is uniquely determined by the state of the other phase from the formulas (see 
(91, (10) of /z/t 

Substituting 
of the given xii+ 

P- = F+ - 2 IPI ~$2~ + +-Ah,, = T x 1 (us+ - on’) + G+ + ‘44, 

Oij” - P&j t- QX(ij,v X s P+/IL_ 

(1.8) into (1.71, we obtain relations for the parameters CL and p in terms 
or +. 

uij * 

a= -A-l (2 [cL2](x,' - x,2+) + 4&,-&I) = 

-m-'A-' ((on' - a,,*)(l - x-r) + 4u_A,,), A = An + AZ 

fi = 2A-' (ACreI + (x - I)&,) = 

A-r @A<,,, + (X - 1) o~z+/K+) 

(1.9) 

(1.10) 

System (i.Ed, (1.61, like (1.31, has to be augmented by suitable conditions on the 
external boundary. 

2. &xaZ st&Zity of tke C&?~?& bound4ly. We consider an actual two-phase 
configuration in which the domain z>O is filled with the plus phase, and z<O with 
the minus phase. Following the definition of /4/, the coherent boundary is stable if, to the 
solutions a’(~, z), p’ (x, z) of the spectral Problem (1.5), (1.6)‘ which are exponentially 
damped in the relevant half-spaces and are oscillatory in the direction of the interphase 
boundary, there correspond non-negative eigenvalues n. The exponentially damped solutions 
of (1.5) in the upper and lower half-spaces are 

a,* =~i(B,*e+p(~kz)+R,+~*txp(~~~fz))exp(--~~) 

a,* =(Br*eexp(:~&)+ B,*exp(TkE*z)) expf--kc) 

p+’ = - nmk-‘B,S exp (k (T z - ir)), E* G r/ I- nk-%T’* 

(2.1) 

(k is the real wave number). 
Substitution of (2.1) into condition (1.6) on the interphase boundary leads to a linear 

homogeneous system of algebraic equations in B,*, R,*. The condition for a non-trivial 
solution of Problem (1.51, (1.6) to exist leads to vanishing of the determinant of the 
system, which implies the following equation for the spectral value- .p (q s nk-z) : 

E_R,* + @_Z-(Q_?+ Q+')$j+E_ - /Y(~c:+~, - s," -/- 4c:-& -s_') = ') 
(2.2) 
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Putting q = 0 and applying 1'Hopital's rule to the resulting indeterminate form, we 
arrive at the equation of the surface of neutral stability 

This equation defines a hyperbola in the plane of the variables a, p. If the point 

(a,, I%) is outside a branch of the hyperbola (we have in mind the domains that contain the 
points p = 0, cc.-+& co), then Eq.(2.2) must have a negative root q, i.e., the equilibrium 
configuration is unstable. 

The complicated form of Eq.(2.2) prevents us making a full analysis of the signs of the 
roots for arbitrary a and p. Without dwelling on the proofs, we can indicate some properties 
of Eq.(2.2): for any value of a = a, (p = PO) we can find a value fi = fi,,(a = a,,) such 
that, for all p (all a) which satisfy the condition ) p I> PO (\a \>a,), 
negative roots (has a negative root); the coherent boundary then satisfies 
conditions for stability (the sufficient conditions for instability). 

Using (1.9) and (l.lO), we can rewrite the equation of the surface of 
in the parameters xii+ or u.1j+: 

(h+ - x22+) (x - 1) + 2A,d2 - 4x (Am + (x - 1) xtd = X@ 

Eq.(2.2) has no 
the necessary 

neutral stability 

(2.4) 

+ kG2x ((%I+ - %+) (1 - x-') + 4p+x-'A1# - 4(A,,,, + (x - l)o:?~;~)~ = A2 (2.5) 

If x#l and An # -ASS, Eq.(2.5) defines in the space of parameters (od, (Jag+, Q+) 
a hyperbolic cylinder (if A,, = -Ab,,, the cylinder degenerates into two intersecting planes). 
Domains outside the cylinder correspond to unstable equilibria. If x= 1, the loss of 
stability depends on the NC (see (2.4) or (2.5)): 

If we fix Aij, Uil+, and p+, while ulz+ # 0, then, as x+ 00 (x+ 0) the left-hand 
side of (2.5) is less than the right-hand side (greater than the right-hand side if on+ - 
oT,,+ # 4~+An, which is equivalent to the condition UIt- = uz2-), and the corresponding 
equilibria will satisfy the necessary conditions for stability (the sufficient conditions 
for instability). 

Let Q+ = 0; we then see from (2.5) that, for sufficiently large X, anynon-hydrostatic 
stresses in the plus phase lead to instability of the two-phase equilibrium. This result 
agrees with that obtained in /6/ on the instability of the interphase boundary separating 
a non-hydrostatically stressed solid phase and its melt in the case of a slipping transition. 

Consider the phase transformations that accompany an ND of cubic expansion-compression 
(Ai] = 66ij)t with u~Z+ = 0. If ;I=1, then a = -2c,*, and (2.2) has the roots 
and q+ = ctL2, i.e., the system is stable. If x< 1 and ull' = u%,' or x> 1 and '=' u-- 11 - 

- 022 1 then the interphase boundary is unstable (see (2.4), (2.5)). This is a typical 
feature of coherent boundaries: with an ND of cubic expansion-compression, a plane coherent 
boundary is always unstable, if, in the hydrostatic state, there is a phase with a lower 
shift modulus (this is also true for compressible phases). Notice that both phases cannot 
be simultaneously in the hydrostatically stressed state (see (1.8)). 

The above sufficient conditions for instability can be used to analyse the local 
stability of heterogeneous systems with curved boundaries and inhomogeneously deformed 
phases, since, in the case of sufficiently short disturbances, the local curvature and 
inhomogeneity of the equilibrium configuration can be neglected. For instance, we know 
that, in the case of coherent transformations with ND of cubic expansion-compression, the 
equilibrium elliptic embryos of the new phase in elastic matrices are in the hydrostatically 
stressed state /l/. On the basis of our above necessary conditions for the stability of 
coherent boundaries, we can assert that the equilibrium configuration with an embryo is 
unstable, if the new phase has a lower shift modulus than the basic phase. 

3. The stability of a two-phase periodic structure. Here, as the actual equilibrium 
configuration, we consider a heterogeneous system consisting of alternating layers of plus 
and minus phase. The layer boundaries in the initial one-phase configuration are assumed to 
be parallel, and the thicknesses 2H, and 2H of the layers (pre-images) are the same for 
each phase. 

Using (l-8), and given the equilibrium homogeneous stressed state in the layers of plus 
phase, we can calculate the state in the layers of minus phase. The stressed states of all 
layers of a g_iven phase are the same, so that the values of the parameters a and p are the 
same for all interphase boundaries. 

Consider the stability of a periodic structure with respect to variations 
(disturbances) of the field of auxiliary displacements ai(r,z) and P' (5, 2) of a periodic 
kind (the x axis is along a boundary), i.e., 

ai (5, Z) = ai (XT z 6 2 (H+ + ff-)) (3.1) 

p'(z, z) = p' (5, z _t 2 (H, + He)) 
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We will say that a heterogeneous two-phase periodic system with coherent interphase 
boundaries is stable if, corresponding to the solution ai, p’ of the spectral Problem (l.!i), 
(1.6). which are periodic along the z axis and are oscillatory along the interphase bound- 
aries, we have non-negative eigenvalues n. 

When studying the equilibrium and stability of such systems, we can distinguish in a 
natural way a "periodic cell" of thickness 2(H+ + H_), consisting of two adjacent layers. 
All the characteristics of the periodic system are repeated on moving from one cell to 
another. Consider the periodic cell ZE[- 2H_, 2H+1 (for clarity, let z E IO, 2H.J be a 
plus phase layer). The general solution of the system of differential Eqs.(l.S) in the cell 
can be written as the sum of symmetric and antisymmetric disturbances. The symmetric 
disturbances are 

fi* = i(F,* ch k (2 7 H*) + F& ch k& (z f H,)) e-ikx 

fi* = - (F,* sh k (z ‘f H*) + F,* sh k& (z T H*)) e-irx 

p;* = - k-‘nmF,* ch k (z 5 H) cikx 

(3.2), 

For the antisymmetric disturbances g$ and Pi* the cosines and sines in each of 
(3.2) are interchanged, and instead of the constants Fr& we.take the constants G%. 

The functions f,- and p+’ in (3.2) are taken for z & [-_2H_,O], and the functions fi’ 
and p,+' for z E [O, 2H+l. In the layer ZE [0,2H+l, the vector f, = {fit, f2+} defines 
disturbances of the displacement field which are symmetrical about the axis a= H,, and 
the vector e+ defines the antisymmetric disturbances. In particular, on the layer boundaries 
2=0 and z=2H,, we have 

fl+(x, 0) = fl+&, 2H+), f,+(x, 0) = - f,' (x, 2H+) 

p;+ (x,0) = P;+ (5,2H+), p;+ (I, 0) = - pi+ (z,2H+) 

gl+ (GO) = - gl+ (x, 2H+), gz+ (x, 0) = ga+ (x, 2H+) 

(3.3). 

The properties of fl&, gl&, pf-’ and pB_’ are similar. 
We substitute (3.1) and (3.2) into the system of boundary conditions (1.6) with z = 0. 

We obtain a first group of algebraic equations in F$ and G&. A second group is obtained 
by considering the boundary relations (1.6) with z = 2H+. As ai+ and p+’ we take 

si+ (I, 2fl+), p+‘(z, 2H+) of (3.2). Using the periodicity condition (3.1), we take as ai- an 

P-’ of the next cell their values ai- (5, --2H_), p_’ (x, --2H_). Together, the two groups of 
linear homogeneous algebraic equations form a system of eight equations for the eight con- 
stants F$ and G&. 

We confine ourselves to the deformed states of the periodic structure in which the par- 
ameter p vanishes (for this, it suffices to put e.g., A(,,, = 0 and o12+ == 0). Then, after 
equivalent transformations that take account of properties (3.3), our system splits into two 
independent subsystems, the first for F&, and the second for G&. 

The condition for a non-trivial solutions li*? Pi* of the spectral Problem (1.5), (1.6) 
to exist is the vanishing of the determinant D1 of the first subsystem, and for the solution 

I 
girt* Pg* * the vanishing of D, of the second subsystem. On evaluating D,, we arrive at an 
equation for the spectral parameter ~(h = kH) 

D, = q (E+z_ (Q_’ th IL_ + Q," th A,) - g+R_’ th h_E_ - E-R+? th hJ+) = 0 (3./t) 

If we deal with the indeterminate form with q=o and equate the resulting expression 
to zero, we obtain the equation of the surface of neutral stability for symmetric dis- 
turbances 

(g-ZDf)n-o = - 'lna2 (c;"- (th h_ - t_) + c;*+ (th h, - t,)) f 2a (t_ + t+) + 
2(c2,_ (thh_ + t_) + c"l+ (th h, + t,)) = 0 

tf = h* (1 - thzh,) ((D&o = (q-‘Df),, = 0) 

We can similarly show that the cotangents instead of the tangents appear in the dis- 
persion Eq.(3.4) and the equation of the surface of neutral stability (3.5) for antisymmetric 
disturbances. 

Note that Eq.(3.5) always has two real roots of different signs af,% (a,'<O<a,'). For 
the case h, = h_ = h, curves of the dimensionless quantities z{,z and &fz against h for 

x=1 and x = 10 are shown in Fig.1 (here we put.?i='/,ac;',C;'_). The broken curves 
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refer to 4 
%,a and the continuous ones to &. If x = 1, then 5: = C&g= -1 for any 

h. 

E- \ \ If ~<a, or aSf< a, Eq.(3.4) always has a negative 

“X=, 
root q. A similar assertion can be made for antisymmetric 
disturbances. 

To sum up, if the stress-deformed state in the layers 
2 

\ \, 
\\ 
\\ 

of plus phase is such that p = 0, while CZEI--, 

\’ !0 1' a,‘[Ula,‘,+m[ (aEl---, alg [Ul alg, f w[ ), then the equi- 
1 --‘,-_ librium in structure will be unstable 

I with respect to symmetric (antisymmetric) disturbances. 
Consider some asymptotic cases. When h+NIL_++ 00, 

we arrive at the results of Sect.2 regardless of the type of 
disturbances. 

Let h+-/z--+0 (this refers physically to the.case 
of long disturbances k-l and finite layer thicknesses Hk, 
or of finite disturbance lengths and small thicknesses). The 
system will be unstable with respect to symmetric disturbances 

&El---oo,- I/'* (I/X + l/l/X) [ (the root 2,' becomes 

infinite), or with respect to antisymmetric disturbances if 

Fig.1 
&El--, -2 (v-x + 1/l/X)-' ru 10, i- 00 [. 

It can be seen from Fig.1 that long-wave disturbances 
can lead to loss of stability of heterogeneous coherent equilibria, in spite of the fact 
that the necessary conditions for the stability of the individual interphase boundaries 
are satisfied (these conditions are here I& I( 1). 

If h+-l,h_-+O (this refers to a two-phase structure with thin periodic coherent 
embryos), the domain of instability for antisymmetric disturbances is the union of intervals 

I - 03, -l/l/X ru IO, + 00 I! or for symmetric disturbances, the union --I----, -VX[U) 
l/i(sh 2h+ + 2h+)(sh 2h+ - 2h,)-', + 00 1. 

The problem of the stability of a secluded plane inctueion of neu phase Cn an 
unbounkd elastic m&r& In the initial configuration, let the layer ZEI--2H_,OI 
be the pre-image of the embryo of a new minus phase, and let the domains zE)---, -2H_ 
[U IO, + 00 T be the pre-images of the half-spaces filled with basic plus phase..It follows 
from (1.8) that the stress-deformed states in the half-spaces of plus phase are the same and 
uniquely define the states in the embryo. The parameters a and p are the same for both 
interphase boundaries. 

We will say that the equilibrium of the coherent embryo of new phase in an unbounded 
elastic matrix is stable if, corresponding to the solutions ai P ’ of the spectral Problem 
(1.5), (1.61, which are exponentially damped within the half-spaces of new phases, and are 
oscillatory along the embryo boundaries, we have non-negative eigenvalues q. As in the problem 
of the stability of a periodic structure, with 0 = 0 system (1.5), (1.6) has solutions of 
symmetric and antisymmetric types. Arguments similar to those in Sects.2 and 3 lead to a 
dispersion equation for the parameter q and an equation of the surface of neutral stablity. 
For the solutions of symmetric type, 
tends to infinity in the latter. 

these equations are the same as (3.4) and (3.5), if h+ 
For the antisymmetric solutions, instead of tangents in 

these equations we have cotangents. 
The equilibrium of the new phase embryo in the elastic matrix becomes unstable if 

a<a, or a2 < a. 
In Fig.l.we show curves of &i,* and G, 2 against h for x=0,1, 1, 10 (continuous 

curve for s?, 2 broken for El,, ). If x = 1, then &,f = erg = -1. If h-+0, then 

&i = _I/x,&2f = I/;, q = __l/l/$ i&g = 0. We can see from Fig.2 that stability is lost if 

the embryo thickness increases for lal>l, or if it decreases for O(Ft or b<max(--1/X, 

-l/l/X). 

5. The Stability of a coherent embryo of Ned phase on the free surface of an e?htCc 
half -space. In the initial configuration, let the domain z E IO,+4 correspond to the 
pre-image of the half-space filled by basic plus phase, and let z El--H,O[ correspond to 
the pre-image of the layer of new minus phase. We will assume that, in the actual equlibrium 
configuration, the principal directions of the tensor A<ij, are the same as the x and z axes. 

On tne outer boundary of the emnryo (2~ --H), constant zero pressure is maintained. system 
11.8) is augmented by the relations 
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From (1.81, 

Fig.2 Fig.3 

c$- = 0, u1$.- = 0 (5.1) 

(5.1) and (1.9), we obtain relations for the homogeneous equilibrium stressed 
state in the embryo and for the parameters a and J3, given ul,+, A,, and AX2 (it follows from 
(1.8) and (5.1) that uzl+ = 0 and Ullf. = 0) 

c,~- = x-%,1+ - ~/LA,,, Oill- = 0, u*,- = 0 (5.2) 

tl = --m-'A-'(on+ (1 - x-1) + 4P_A,,), fi = 0 

When studying the stability of this equilibrium, the spectral problem (1.5), (1.6) is 
augmented by the following equations, obtained from the condition that the pressure on the 
outer boundary of the embryo be constant (z= -I?): 

(5.3) 

The equilibrium embryo is said to be stable if, corresponding to the solutions of 
Problem (1.5), (l-6), (5.3), which are exponentially damped as Z-+w, and are oscillatory 
along the interphase boundary, we have non-negative values of the parameter q. An analysis 
similar to that in Sects.2 and 3, leads to an equation for q, and a relation for the critical 
deformations: 

5_(Q+*E+- B+a)(4c4,_~_cb h sh hf_fS_ shkchhf-) + 4:+&c;_Q_R_S_- 

j+s_ch h ch ht_ (4c',_R_'--Q_W2)+ ~+shhshi~E_(4~~_5_*4_* + K'S_7 = 0 

_tz (x-'(sh hch h - h) -f- ch2 h + h2) + 4zc? _h? i_ 4c;_ (x (sh h ch k - 11) + 
sha h - h2) 2 0 

(5.4) 

(5,5) 

For fixed x and h, Eq.(5.5) always has two real roots of opposite signs %,2 (a1 <0 <a,). 
For ore]--no, a,(uJ~,, +x[, Eq.(5.4) has a negative root 4. The present equilibrium two- 
phase configuration is therefore unstable if, given the stresses an+ expanding (or com- 
pressing) along the interphase boundary, and given the transformation deformation A n,A,,, 
the embryo thickness H, and the disturbance length k-l, the parameter CL obtained from (5.2) 
lies in the domain J--p,a,fLJJa,,+~o[. 

The continuous curves in Fig.3 represent Z,,. against h. As jr-+oo (5.4) splits into 
two equations. One is the Rayleigh equation for the surface waves in the isotropic half- 
space of minus phase. We know /5/ that there are only real positive roots corresponding to 
this equation. The second is Eq.(2.2) with ,@-0. Accordingly, @'l,r -I Fl. As h-0, we 
can write cz,,% asymptotically in terms of h: 
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i.e.,the threshold values of the parameter a at which instability occurs tend to zero(Fig.3). 
Consequently, in the case of a non-zero jump of the principal stresses in the tangential 
direction to the interphase boundary (lo,,l= --mAa), a reduction of the embryo thickness 
leads to a loss of stability. 

6. 2% st~~l~t~ of a coherent emhfo on the botmkw of the etastfc half-qpaca of 
the basic p~e~r~~~l~. Let Ao,, = O, o~~+=o (the parameter Q then vanishes). On 
the outer embryo boundary, we take the condition for the total displacements of the material 
particles to vanish. Using expansions (l.l), this leads to the relations 

vl- + A+ = 0, vl- - A,,H = 0 (6.1) 

The presence of a rigid wall in the configuration constrains the choice of %+ and 
"a%+. It follows from (1.8) and (6.1) that, in an actual configuration, only the hydro- 
static state of the plus phase is possible: ~,~*=a~~+= -p+. Given P+, All, Arrr the homo- 
geneous stressed state in the embryo and the parameter a are given by (1.85, (l-9), (6.11, 
in accordance with 

Q- = -p+ - &-A,,, u9%- = -p+ 
ul*- = 0, a = 4c~_A1,A-~ 

(6.8) 

The same definition of stability is taken as in Sect.5. Instead of (5.3), with r=--ET 
we have the condition 

4x- = a*- = 0 (8.3) 
The corresponding equation for the eigenvalue q of specral Problem (1.5), (1.6), (6.3), 

and the equation of the surface of neutral stability, are 

-q98S~~_--+R_P,(S_chhchh~_-shhshhe,_-t,t+ 
E_(Q+%.-- ~,*)(&chhshkC,_-sshhchkt_f- 
<+$_Q_*(ch h&M_-<_ shhshh$_- 1)=0 

a~(h+shhchhf~(s)lPh-~lt2))-4ahac~~-c~_(h+shhchh+X-'(ch~h~ 
f&2)) = 0 

(8.4) 

(8.5) 

Eq.(6.5) has two real roots of different signs a, and a,(a,<O<a,). 
The broken curves in Fig.3 show ‘&$,a against h (Tit - --1, 8*--r. f as he +m;$~---oo, 

?&-.+u, as h+O). If a<az or a,<~, Eq.(6.4) has a negative root 4, and the 
equilibrium configuration is then unstable. Note that, as distinct from Sect.5, the stability 
does not depend on ip+. 

We see from Fig.3 that, if the necessary conditions for local stability of Sect.2 are 
not satisfied, then, no matter what the fixed length of the disturbance, the system always 
loses stability when the thickness of the coherent embryo increases. 
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